濾筒除塵器是種治理工業(yè)粉塵的穩(wěn)定的除塵設(shè)備,由于其除塵效率更高、占地面積小、檢修方便,鋼耗量少的優(yōu)點,逐漸成為多數(shù)企業(yè)除塵設(shè)備。
據(jù)相關(guān)資料介紹,影響除塵器除塵效率關(guān)鍵因素是過濾風(fēng)速和除塵室內(nèi)的內(nèi)部流場分布,過濾風(fēng)速可以根據(jù)顆粒物性、粉塵濃度等因素來調(diào)節(jié)。
內(nèi)對濾筒除塵器內(nèi)部流場特征的研究相對較少,傳統(tǒng)的物理實驗受現(xiàn)有測量技術(shù)的限制,無法獲得除塵器內(nèi)部詳細(xì)的流場分布,從而無法合理的預(yù)估實際生產(chǎn)中存在的問題,而且物理實驗造成的能源浪費也較為嚴(yán)重,除塵器內(nèi)部流場的分析屬于非線性流動問題,理論分析過于復(fù)雜,存在較多的人為因素。
近年來,計算機技術(shù)的高速發(fā)展增加了計算機數(shù)值模擬的可行性,可容易的實現(xiàn)復(fù)雜流動的模擬求解。
本文將對濾筒除塵器的不同進(jìn)出口夾角對氣流流場的影響進(jìn)行模擬研究,尋求不同進(jìn)出口夾角對氣流分布均勻性的影響規(guī)律。
1、除塵器概述
濾筒除塵器是在布袋除塵器的基礎(chǔ)上,將濾袋升為濾筒,以期實現(xiàn)提高過濾效率及增加過濾風(fēng)量的新代除塵產(chǎn)品;與布袋除塵器相比,不僅在過濾風(fēng)量和過濾效率方面得到了巨大的提高,同時濾筒除塵器具有低壓運行、低阻損等顯著優(yōu)點。
因此濾筒除塵器可以做到結(jié)構(gòu)緊湊,大大減少占地面積,降低初期投資及運行維護成本。
1.1 濾筒除塵器工作原理
濾筒除塵器的過濾方式為表層過濾,含塵氣體由進(jìn)風(fēng)口進(jìn)入除塵器后,由于空間的擴大及導(dǎo)流板的氣流分布作用,氣流流速變緩,含塵氣流中顆粒粗大的粉塵在重力和慣性力作用下落入灰斗;而微細(xì)粉塵隨氣流進(jìn)入除塵室,由于布朗效應(yīng)以及濾筒的篩分作用,終使粉塵沉積在濾料表面上,當(dāng)濾筒兩側(cè)壓差達(dá)到設(shè)定值后脈沖清灰裝置動作進(jìn)行清灰,使粉塵落入灰斗;凈化后的氣體進(jìn)入凈氣室由排氣管匯集到出氣口經(jīng)風(fēng)機排出,落入灰斗的粉塵經(jīng)卸灰閥排出除塵器。
1.2 進(jìn)出口位置對氣流的影響
據(jù)相關(guān)資料介紹,影響除塵器除塵效率關(guān)鍵因素是粉塵性質(zhì)、濾筒材質(zhì)、過濾風(fēng)速和除塵室的氣流上升速度等因素有關(guān)。其次,還與清灰方法及清灰能力有關(guān)。
對于粉塵性質(zhì)、濾筒特性、和風(fēng)速的研究較多,而對氣流的上升的研究較少。含沉氣流的上升速度及流場主要受進(jìn)風(fēng)口位置和出風(fēng)口位置影響大。
根據(jù)有關(guān)資料對側(cè)下進(jìn)風(fēng)、下進(jìn)風(fēng)、側(cè)中進(jìn)風(fēng)、側(cè)上進(jìn)風(fēng)等不同進(jìn)風(fēng)方式的分析,得出側(cè)中進(jìn)風(fēng)方式是進(jìn)風(fēng)方式。氣流在灰斗和塵氣室內(nèi)沒有形成渦流,流場較為均勻。
因此,在下文的模擬中采用側(cè)中進(jìn)風(fēng)的進(jìn)氣方式。本文為探索不同出口方式對濾筒除塵器氣流分布均勻性的影響,采用進(jìn)出口夾角為0°、90°和180°3種出口形式進(jìn)行模擬分析。
1.3 滲透率
滲透率K是描述多孔介質(zhì)性質(zhì)的個關(guān)鍵參數(shù),表征在外加壓力梯度的作用下種流體通過多孔介質(zhì)的容易程度。
本例中含塵氣流在除塵器內(nèi)部的流動可看作恒定不可壓縮流動,濾筒可看作有限厚度的薄膜,通過它的壓力變化定義為達(dá)西定律和附加內(nèi)部損失項的結(jié)合:
1.4 濾筒流量分配系數(shù)
濾筒的流量分配系數(shù)是指每個濾筒實際處理氣體流量與平均處理氣體流量的比值,該參數(shù)可有效反應(yīng)單個濾筒的實際過濾情況,記作Kqi,其公式表示為:
該系數(shù)越小,說明流量分布越均勻,對濾筒除塵器整體設(shè)計越好。
2、建模
濾筒除塵器內(nèi)部結(jié)構(gòu)較為復(fù)雜,若不對其進(jìn)行簡化處理,那么除塵器流場的分析將會非常復(fù)雜,以至于計算機無法完成計算,因此,需要對除塵器的內(nèi)部結(jié)構(gòu)做適當(dāng)簡化,假設(shè)如下:
(1)濾筒除塵器主要處理粉塵對象為炭黑等輕質(zhì)干燥粉塵,因此,可將輕質(zhì)粉塵和氣體的混合物看作是種均勻介質(zhì),在進(jìn)行數(shù)值模擬時,將該氣固兩相流近似簡化成具有平均流體特性的單相流處理。
(2)濾筒除塵器在實際運行過程中,濾筒表面的粉塵量是不斷變化的,而在此不進(jìn)行動態(tài)分析,僅做些靜態(tài)模擬,即在粉塵層厚度定的情況下做壓強、速度及流量分配等的分析。
(3)濾筒結(jié)構(gòu)較為復(fù)雜,褶數(shù)較多,對于數(shù)值分析的建模及計算不利,因此,將濾筒除塵器簡化為圓柱狀,其他相關(guān)設(shè)置參數(shù)做進(jìn)步相似更改。
根據(jù)模型簡化的規(guī)則,去除脈沖噴吹部分、連接部分以及清灰部分等,在SOLIDWORKS中創(chuàng)建的三維模型。
根據(jù)某公司的除塵器模型,除塵器的進(jìn)口尺寸為500mm×500mm,出口尺寸為200mm×1000mm,3種建模出口方位與進(jìn)口方位的夾角分別0°、90°為和180°。
將SOLIDWORKS中創(chuàng)建的三維模型導(dǎo)入Gambit進(jìn)行有限元網(wǎng)格劃分,在Gambit中采用非結(jié)構(gòu)化網(wǎng)格劃分技術(shù)進(jìn)行網(wǎng)格劃分。
網(wǎng)格劃分完成后導(dǎo)入SOLIDWORKS軟件中,依次點擊Mech→Polydedra→Convert Domain,經(jīng)過短暫的時間轉(zhuǎn)化后,將四面體非結(jié)構(gòu)化網(wǎng)格轉(zhuǎn)化為多面體網(wǎng)格,提高計算效率。
除塵器規(guī)格為濾筒個數(shù)6排8列,共48個,濾筒規(guī)格為150mm×1500mm,過濾總風(fēng)量為6900m3/h,即濾筒過濾風(fēng)速約為0.8mm/min,本模擬中濾筒采用的是非覆膜式,采用的濾筒滲透率α為1×10-5m2。
為更好的分析濾筒間氣流分布情況,方便下文敘述,現(xiàn)對濾筒進(jìn)行編號,靠近進(jìn)氣口的為列,示意圖見圖2。
3、模擬結(jié)果分析
綜合3種出口位置模型模擬數(shù)據(jù),繪制3種出口位置下的綜合流量分配系數(shù)如下圖3所示。綜合流量分配系數(shù)反映了3種出口位置的除塵器的流量分配情況。從圖3可以看出,進(jìn)出口夾角為90°和夾角為180°的除塵器模型的流量分配均勻性均較好,而進(jìn)出口夾角為0°的除塵器模型氣流分配均勻性較差。
將3種出口形式的濾筒總過濾風(fēng)量進(jìn)行統(tǒng)計,進(jìn)出口夾角為0°的除塵器的過濾風(fēng)量的質(zhì)量流量為2.349 kg/s1進(jìn)出口夾角為90°的除塵器為2.350 kg/s1進(jìn)出口夾角為180°的除塵器為2.346 kg/s,3種出口形式的濾筒總過濾風(fēng)量差值大為0.004 kg/s,小于總過濾風(fēng)量的1%,因此,可以將3種出口形式下的氣流分布進(jìn)行對比。
對3種出口形式的濾筒除塵器不同排和不同列濾筒過濾風(fēng)量進(jìn)行統(tǒng)計(1~8號濾筒為1排,9~18號濾筒為2排,以此類推,直到41~48號濾筒為六排。1、9、17、25、33和41號濾筒為1列,2、10、18、26、34和42號濾筒為2列,以此類推,直到8、16、24、32、40和48號濾筒為8列,繪制表格見表1和表2。
根據(jù)上述表格,繪制不同排濾筒過濾風(fēng)量圖及不同列濾筒過濾風(fēng)量圖。
不同排和不同列濾筒過濾風(fēng)量圖顯示了整個除塵器的過濾情況,從以上分析數(shù)據(jù)可以看出,不論何種出口位置,整個除塵器中心部分的濾筒過濾風(fēng)量均有所降低,即靠近除塵器側(cè)壁的除塵器的過濾風(fēng)量較高。
再來觀察不同排濾筒過濾風(fēng)量統(tǒng)計圖,重點分析6排濾筒的過濾風(fēng)量,從圖中可以明顯看出,進(jìn)出口夾角為90°的濾筒除塵器的6排濾筒過濾風(fēng)量
再來觀察不同列濾筒過濾風(fēng)量統(tǒng)計圖,重點分析1列和8列濾筒的過濾風(fēng)量,進(jìn)出口夾角為0°的除塵器的1列濾筒過濾風(fēng)量進(jìn)出口夾角為180°的除塵器的8列濾筒過濾風(fēng)量明顯高于進(jìn)出口夾角為0°的除塵器,略高于進(jìn)出口夾角為90°的除塵器。
綜合模擬結(jié)果可以得出結(jié)論,進(jìn)出口夾角為180°時氣流分布均勻。
流場在相同的總過濾風(fēng)量下,出口位置會導(dǎo)致與之鄰近的濾筒的過濾風(fēng)量的提高,進(jìn)出口夾角為180°時氣流分布均勻。
4、結(jié)論
為探索不同進(jìn)出口夾角對濾筒除塵器氣流分布均勻性的影響,采用進(jìn)出口夾角為0°、90°和180°3種出口形式進(jìn)行模擬分析,分別從不同排和不同列的濾筒過濾風(fēng)量和綜合流量分配系數(shù)的角度對比得出:出口位置會致與之鄰近的濾筒的過濾風(fēng)量的提高。
綜合考慮濾筒流量分配系數(shù)和各濾筒過濾風(fēng)量,在設(shè)計濾筒除塵器時,應(yīng)盡量選用進(jìn)出口夾角為180°即進(jìn)風(fēng)口位置相對的氣流分布方式。
電話
微信掃一掃